
TINYBASIC(1)                                             General Commands Manual                                             TINYBASIC(1)

NAME
tinybasic - Tiny BASIC interpreter and compiler

SYNOPSIS
tinybasic [ options ] program-file

DESCRIPTION
Tinybasic is an implementation of the Tiny BASIC language. It conforms to the specification by Dennis
Allison, published in People’s Computer Company Vol.4 No.2 and reprinted in Dr. Dobb’s Journal, January
1976.

The package provides both an interpreter and a compiler in the same executable. Both of these tools are
non-interactive, and load their input from a source file written in a text editor. No interactive interpreter is
provided.

Tinybasic provides a few additional features. Comments with the REM statement were not part of the orig-
inal specification, but are allowed here. There is support for optional line numbers, and a configurable upper
limit for them. Because not all lines need a number, this manual will refer to them as ´line labels.´ Where
the phrase ´line number´ appears, it will refer to the actual line count in the source file, as a text editor
would show.

OPTIONS
-g limit, --gosub-limit=limit

Specifies the maximum depth of subroutine calls for the interpreter. Calling subroutinnes within
subroutines to a level deeper than this will result in the "Too many GOSUBs" runtime error. This
does not affect compiled code.

-n value, --line-numbers=value
Determines the handling of line labels. An argument of m or mandatory causes tinybasic to
require a line label for every program line, in ascending order. An argument of i or implied causes
tinybasic to supply labels internally for each line that lacks them; care must be taken when
labelling lines so that there is room for a sequence of numbers between one line label and the next.
An argument of o or optional makes line labels completely optional; those that are supplied need
not be in ascending order.

-N limit, --line-number-limit=limit
Specifies the largest line label allowed in the BASIC program. The default is 32767, which is the
highest value that tinybasic supports. The original Tiny BASIC had a limit of 255.

-o comment-option, --comments=comment-option
Enables or disables support for comments and blank lines in programs. Comment-options can be e
or enabled to support comments and blank lines, which is the default setting. It can be d or dis-
abled to disable support for comments, as per the original Tiny BASIC specification.

-O [output-type], --output[=output-type]
Specifies compilation or translation instead of interpretation, and what type of output is desired. If
the option is supplied without an output-type, then the default is lst. If the option is absent alto-
gether, then the program will be interpreted rather than compiled or translated. Current out-
put-types supported are lst for a formatted listing, c for a C program ready to compile, or exe.
Where the output type is lst or c the output filename is the same as the input filename, with an
added extension the same as .output-type. Where the output type is exe, the output file is depen-
dent on the input filename and the TBEXE (see the section on Compilation).

PROGRAM FORMA T
Programs are text files loaded in on invoking tinybasic. Each line of the file consists of an optional line
label, a command keyword, and the command’s parameters, if it has any. Lines may be blank, or the com-
mand keyword may be REM, which denotes that the rest of the program line is a comment.

That describes a program written using tinybasic’s additional features. In a traditional Tiny BASIC pro-
gram each line has a mandatory line label, a command keyword which may not be REM, and the com-
mand’s parameters. The original Tiny BASIC specification did not provide for comments or blank lines,

1



TINYBASIC(1)                                             General Commands Manual                                             TINYBASIC(1)

and the line labels were required by the language’s interactive line editor.

COMMANDS
LET variable=expression

Assigns a value, the result of expression, to a variable, variable. Variable must be a single letter,
A..Z. Expression must evaluate to an integer in the range -32768 to 32767.

IF condition THEN statement
Conditional execution. If condition is true, then statement is executed. Statement can be another
IF, allowing conditions to be chained, effectively mimicking an AND operator.

GOTO expression
Transfer execution to another part of the program. Expression is evaluated, and program execution
continues at the line marked with the corresponding label.

GOSUB expression
Calls a subroutine. Expression is evaluated, and program execution transfers to the line marked
with the corresponding label. The position of the GOSUB is remembered so that a RETURN can
bring program execution back to the statement following the GOSUB.

RETURN
Return from a subroutine. Program execution returns to the statement following the GOSUB
which called the present subroutine.

END Terminates program execution.

PRINT output-list
Produces output to the console. Output-list is a list of items separated by commas. Each item can
be either a string literal enclosed in double quotation marks, or a numeric expression. An end of
line sequence is output after all the values, so that the next PRINT statement will put its output on
a new line.

INPUT variable-list
Asks for input from the console. Variable-list is a list of variable names. For each variable given,
a question mark is output and the value typed by the user is stored in that variable. Tinybasic
allows multiple values to be typed by the user on one line, each separated by any non-numeric
character.

REM comment-text
Provides space for free-format comment text in the program. Comments have no effect on the
execution of a program, and exist only to provide human-readable information to the programmer.
Use of this command will raise an error if support for comments is disabled (see the -o/--comment
option above).

EXPRESSIONS
Expressions in Tiny BASIC are purely arithmetic expressions, involving integers only. The four basic arith-
metic operators are supported: multiplication (*), division (/), addition (+) and subtraction (-). Unary oper-
ators for positive (+) and negative (-) are supported, as are parentheses for affecting the order of operations.

Standard operator precedence evaluates parentheses first, then unary signs, then multiplication and division,
with addition and subtraction last.

CONDITIONS
The relational operators are =, >, <, <> or ><, >=, and <=. They are not supported within arithmetic
expressions, but can only be used as conditions in IF statements in the form: expression relational-operator
expression

COMPILA TION
Tinybasic is capable of compiling programs into executables with the help of a C compiler. To use this
facility, the TBEXE environment variable must be set before invoking tinybasic. The variable should con-
tain the command that compiles a C program into an executable, and may contain the following tokens:

$(SOURCE): the C source filename is substituted here.

2



TINYBASIC(1)                                             General Commands Manual                                             TINYBASIC(1)

$(TARGET): a target filename is substituted here.

The C source filename will be the same as the BASIC filename but with the extension .c added. The target
filename is the BASIC source filename with the .bas extension removed; if the BASIC source filename has
no extension, then .out is added to prevent the source being overwritten by the executable. If your operating
system requires an extension like .exe for its executables, then you need to add it explicitly (i.e. $(TAR-
GET).exe) - unless the compiler adds that itself. As an example, the file test.bas could be compiled on a
Unix system with the following commands:

$ TBEXE=’gcc -o $(TARGET) $(SOURCE)’
$ tinybasic -Oexe test.bas

This would produce the executable file test, and as a side effect, the C source file test.bas.c.

ERROR MESSAGES
Program error messages can be in one of two forms:

Parse error: description, line line-number, label line-label
Run-time error: description, label line-label

Parse errors are those that are detected before the program starts. Run-time errors are those that cannot be
detected until the program is running. If a parse error is detected on a line without a label, then the label
section is omitted from the error message. The error messages and their meanings are as follows.

Invalid line number
One of the following has occurred: (i) a line label is missing when line numbers are mandatory;
(ii) a line label is lower than the previous one when line numbers are mandatory or implied.

Unrecognised command
The command keyword is not recognised. Note that REM will not be recognised when comments
are disabled, and will produce this error.

Invalid variable
In a LET or INPUT statement, something other than a letter from A to Z was supplied when a
variable name was expected.

Invalid assignment
The = sign was missing from a LET statement.

Invalid expression
An expression in this line is invalid. It is possibly lacking an operator, variable or value where one
is expected.

Missing )
An expression contains a left parenthesis and no corresponding right parenthesis.

Invalid PRINT output
Something is wrong with the output list in a PRINT statement. It could be: (i) completely missing,
(ii) missing a separator between two items, or (iii) missing an item between two separators or at
the start or end of the list.

Invalid operator
An unrecognised operator was encountered in an expression or a condition.

THEN expected
The mandatory THEN keyword is missing from its expected place in an IF statement.

Unexpected parameter
A parameter was given to a command that should not have one, such as END or RETURN.

3



TINYBASIC(1)                                             General Commands Manual                                             TINYBASIC(1)

RETURN without GOSUB
A RETURN was encountered without having executed a GOSUB. This commonly occurs when a
programmer forgets to put an END or a GOTO before a subroutine, and allows execution to blun-
der into it.

Divide by zero
The divisor in an expression was 0. If dividing by a variable or an expression, it is advisable to
check beforehand that it cannot be zero. An intentional division by zero is not the most graceful
way to stop a program.

Overflow
When given as a parse error, there is a value in the program that is outside the range of -32768 to
32767. When given as a runtime error, an expression in the program or an input from the user has
produced a result outside this range.

Too Many GOSUBs
Subroutines were called to a level deeper than the GOSUB limit allows. Often encountered
because of runaway recursion, or because an incorrect label was given in a GOSUB statement
causing a subroutine to unintentionally call itself.

VERSION INFORMA TION
This manual page documents tinybasic, version 1.0.4.

AUTHORS
Tiny BASIC was originally designed by Dennis Allison. This implementation was written by Damian
Gareth Walker.

EXAMPLE
This program prints out all of the numbers in the Fibonnaci series between 0 and 1000.

LET A=0
LET B=1
PRINT A

100        PRINT B
LET B=A+B
LET A=B-A
IF B<=1000 THEN GOTO 100
END

4


